Your Good Partner in Biology Research

Human Core Binding Factor alpha1 CBFA1/RUNX2 ELISA Kit

  • 中文名称:
    人核心结合因子α1,CBFA1/RUNX2酶联免疫试剂盒
  • 货号:
    CSB-E12935h
  • 规格:
    96T/48T
  • 价格:
    ¥3600/¥2500
  • 其他:

产品详情

  • 产品描述:

    This Human RUNX2 ELISA Kit was designed for the quantitative measurement of Human RUNX2 protein in serum, plasma, tissue homogenates, cell culture supernates. It is a Sandwich ELISA kit, its detection range is 31.25 pg/mL-2000 pg/mL and the sensitivity is 7.8 pg/mL.

  • 别名:
    Acute myeloid leukemia 3 protein ELISA Kit; Alpha subunit 1 ELISA Kit; AML3 ELISA Kit; CBF alpha 1 ELISA Kit; CBF-alpha-1 ELISA Kit; CBFA1 ELISA Kit; CCD ELISA Kit; CCD1 ELISA Kit; Cleidocranial dysplasia 1 ELISA Kit; Core binding factor ELISA Kit; Core binding factor runt domain alpha subunit 1 ELISA Kit; Core binding factor subunit alpha 1 ELISA Kit; Core-binding factor subunit alpha-1 ELISA Kit; MGC120022 ELISA Kit; MGC120023 ELISA Kit; Oncogene AML 3 ELISA Kit; Oncogene AML-3 ELISA Kit; OSF 2 ELISA Kit; OSF-2 ELISA Kit; OSF2 ELISA Kit; Osteoblast specific transcription factor 2 ELISA Kit; Osteoblast-specific transcription factor 2 ELISA Kit; OTTHUMP00000016533 ELISA Kit; PEA2 alpha A ELISA Kit; PEA2-alpha A ELISA Kit; PEA2aA ELISA Kit; PEBP2 alpha A ELISA Kit; PEBP2-alpha A ELISA Kit; PEBP2A1 ELISA Kit; PEBP2A2 ELISA Kit; PEBP2aA ELISA Kit; PEBP2aA1 ELISA Kit; Polyomavirus enhancer binding protein 2 alpha A subunit ELISA Kit; Polyomavirus enhancer-binding protein 2 alpha A subunit ELISA Kit; Runt domain ELISA Kit; Runt related transcription factor 2 ELISA Kit; Runt-related transcription factor 2 ELISA Kit; RUNX2 ELISA Kit; RUNX2_HUMAN ELISA Kit; SL3 3 enhancer factor 1 alpha A subunit ELISA Kit; SL3-3 enhancer factor 1 alpha A subunit ELISA Kit; SL3/AKV core binding factor alpha A subunit ELISA Kit; SL3/AKV core-binding factor alpha A subunit ELISA Kit
  • 缩写:
    RUNX2
  • Uniprot No.:
  • 种属:
    Homo sapiens (Human)
  • 样本类型:
    serum, plasma, tissue homogenates, cell culture supernates
  • 检测范围:
    31.25 pg/mL-2000 pg/mL
  • 灵敏度:
    7.8 pg/mL
  • 反应时间:
    1-5h
  • 样本体积:
    50-100ul
  • 检测波长:
    450 nm
  • 研究领域:
    Epigenetics and Nuclear Signaling
  • 测定原理:
    quantitative
  • 测定方法:
    Sandwich
  • 精密度:
    Intra-assay Precision (Precision within an assay): CV%<8%
    Three samples of known concentration were tested twenty times on one plate to assess.
    Inter-assay Precision (Precision between assays): CV%<10%
    Three samples of known concentration were tested in twenty assays to assess.
  • 线性度:
    To assess the linearity of the assay, samples were spiked with high concentrations of human CBFA1 in various matrices and diluted with the Sample Diluent to produce samples with values within the dynamic range of the assay.
      Sample Serum(n=4)
    1:200 Average % 91
    Range % 86-95
    1:400 Average % 102
    Range % 97-107
    1:800 Average % 91
    Range % 85-97
    1:1600 Average % 97
    Range % 91-103
  • 回收率:
    The recovery of human CBFA1 spiked to levels throughout the range of the assay in various matrices was evaluated. Samples were diluted prior to assay as directed in the Sample Preparation section.
    Sample Type Average % Recovery Range
    Serum (n=5) 95 89-98
    EDTA plasma (n=4) 97 90-100
  • 标准曲线:
    These standard curves are provided for demonstration only. A standard curve should be generated for each set of samples assayed.
    pg/ml OD1 OD2 Average Corrected
    2000 1.957 1.999 1.978 1.887
    1000 1.567 1.603 1.585 1.494
    500 1.106 1.101 1.104 1.013
    250 0.719 0.732 0.726 0.635
    125 0.407 0.412 0.410 0.319
    62.5 0.283 0.298 0.291 0.200
    31.25 0.164 0.165 0.165 0.074
    0 0.090 0.092 0.091  
  • 数据处理:
  • 货期:
    3-5 working days

产品评价

靶点详情

  • 功能:
    Transcription factor involved in osteoblastic differentiation and skeletal morphogenesis. Essential for the maturation of osteoblasts and both intramembranous and endochondral ossification. CBF binds to the core site, 5'-PYGPYGGT-3', of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, osteocalcin, osteopontin, bone sialoprotein, alpha 1(I) collagen, LCK, IL-3 and GM-CSF promoters. In osteoblasts, supports transcription activation: synergizes with SPEN/MINT to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE). Inhibits KAT6B-dependent transcriptional activation.
  • 基因功能参考文献:
    1. these data indicated that miR-23b was involved in TNF-alpha-mediated reduction of bone marrow mesenchymal stem cell osteogenesis by targeting runx2. PMID: 29234953
    2. that cross-talk between cAMP/PKA signaling and RUNX2 promotes a malignant phenotype of glioma cells PMID: 30203400
    3. Study identified RUNX2 to be targeted by miR-217 which directly bound to RUNX2 mRNA and inhibited its expression in bladder cancer cells. Also, findings demonstrated that RUNX2 expression was upregulated by hsa_circ_0000144. Moreover, rescue assays demonstrated that RUNX2 was a downstream effector molecule of hsa_circ_0000144/miR-217 network. These results revealed the oncogenic role of RUNX2 in bladder neoplasm. PMID: 30098434
    4. In summary, these results reveal that PTHLH expression is a poor prognosis marker in head and neck squamous cell carcinoma patients, and RUNX2-PTHLH axis contributes to head and neck squamous cell carcinoma tumor growth. PMID: 28120940
    5. Knockdown of RUNX2 significantly inhibited TE-1 and EC-109 cell viability, repressed TE-1 cell migration and invasion, and increased TE-1 cell apoptosis and were associated with the activation of the PI3K/AKT and ERK pathways. PMID: 30138923
    6. Results show that RUNX2 gene silencing increased gemcitabine (GEM) sensitivity of p53mutated pancreatic cancer (PaCa) MiaPaCa2 spheres suggesting that RUNX2 is involved in PaCa-GEM resistance in presence of mutated p53. PMID: 29620279
    7. Runx2 overexpression effectively decreased TNF-alpha-induced Bax and cleaved caspase-3 expression levels PMID: 29129496
    8. RUNX2 is one of the promising molecular targets for the treatment of the patients with pancreatic cancer regardless of their p53 status[review] PMID: 29558908
    9. we identified a novel missense mutation of RUNX2 in 2 patients by Whole exome sequencing and showed potential correlations between facial phenotypes and missense mutations in Runt domain through a mini-meta analysis. PMID: 30095610
    10. Mutant Runx2 regulates amelogenesis and osteogenesis through a miR-185-5p-Dlx2 axis. PMID: 29242628
    11. Results show that RUNX2 is highly expressed in bladder cancer tissues and are negatively correlated with miR-154 levels. This is likely through miR-154 binding the 3'-UTR of RUNX2 mRNA, promoting its degradation. PMID: 29048677
    12. Results identified a novel mutation besides the previously known in one patient with cleidocranial dysplasia (CCD). G462X mutation in exon 8 is located in the C-terminus of proline/serine/threonine-rich (PST) domain. It might reduce the Runx2 transacting activity, lower the protein stability, downgrade the expression of bone marker genes, and eventually diminish osteoblast differentiation in CCD patients. PMID: 28703881
    13. Findings reveal a novel mechanism that Runx2 is transcriptionally regulated by HSP90 via the AKT/GSK-3beta/beta-catenin signaling pathway, and by which leads to apoptosis of osteosarcoma cells. PMID: 28681940
    14. Study identifies a novel missense mutation (c.895 T>C, Y299H) in exon 5 of Runx2 gene in patients with cleidocranial dysplasia (CCD). This mutation results in an amino acid change at codon 895 (P.Tyr 299 His.) from a tryptophan codon (TAT) to a histidine codon (CAT). PMID: 29058294
    15. miR-539 functions as a tumor suppressor in colorectal cance, at least in part, by targeting RUNX2. PMID: 28938522
    16. These results indicate activation of DLX5 and RUNX2 via its distal promoter represents a unique feature of GFs, and is important for ECM regulation. Down-regulation of these transcription factors in PAFs could be associated with their property to degrade collagen, which may impact on the process of periodontitis. PMID: 27645561
    17. down-regulated miR-143-5p promotes the differentiation of DPSCs into odontoblasts by enhancing Runx2 expression via the OPG/RANKL signaling pathway. PMID: 28608628
    18. Three novel mutations (R193G, 258fs, Y400X) in cleidocranial dysplasia. PMID: 28505335
    19. The Runx2 is one of the genes responsible for the pathogenesis of osteoarthritis (OA) because RUNX2 is up-regulated in chondrocytes in OA cartilage and a germline haplodeficiency or deletion of Runx2 in articular chondrocytes decelerates OA progression. PMID: 29356961
    20. application of dexamethasone reduced the expression of RUNX2 and beta-catenin in human gingiva-derived mesenchymal stem cells PMID: 28459354
    21. Runt-related transcription factor 2 (RUNX2) was directly negatively regulated by miR-203. PMID: 28525948
    22. prolactin induction of VEGF-C and Runx2 was inhibited partly by Carboxypeptidase-D inhibitors, implicating nitric oxide , produced by PRL-regulated Carboxypeptidase-D, in breast cancer progression PMID: 28364216
    23. This is the novel report describing to demonstrate that the Runx2 expression of MSC is synergistically influenced by the hydrogels elasticity and their manner of ephrinB2 immobilized. PMID: 28300720
    24. Osterix and RUNX2 are transcriptional regulators of sclerostin in human bone PMID: 27154028
    25. High RUNX2 expression is associated with invasive and metastatic potentials of gastric cancer. PMID: 27007162
    26. These findings suggest possible involvement of RUNX2-rs194328 in the etiology of NS-CL+/-P in Korean cleft-parent trios without excess parental transmission. PMID: 23909516
    27. WWOX expression was strongly inhibited in human lung cancers and lung cancer cell lines. Reintroducing WWOX into lung cancer cells inhibited their invasive phenotype through downregulating RUNX2 and its target genes including MMP-9 expression. PMID: 27834355
    28. our results strongly suggest that RUNX2 might be a key player in receptor tyrosine kinase (RTK)-based autocrine loops and a mediator of resistance to BRAF V600E inhibitors involving RTK up regulation in melanoma. PMID: 27102439
    29. Thus, WNT/beta-catenin activation is required for RUNX2 expression in at least some osteosarcoma cell types, where RUNX2 is known to promote expression of metastasis related genes. PMID: 28370561
    30. miR-105/Runx2 axis mediates FGF2-induced ADAMTS expression in osteoarthritis cartilage. PMID: 26816250
    31. regulation of gal-3 expression was strongly correlated with runx2 transcription factor in human thyroid carcinoma. PMID: 28390192
    32. Studied association of runt-related transcription factor 2 (RUNX2) polymorphisms with susceptibility and prognosis of ossification of posterior longitudinal ligament. PMID: 27704615
    33. these studies define a novel fibrinogen-alpha9beta1-SMAD1/5/8-RUNX2 signaling axis can efficiently induce osteogenic differentiation from human embryonic stem cells and induced pluripotent stem cells. PMID: 27331788
    34. Data show that BRD4 controls RUNX2 by binding to the enhancers (ENHs) and each RUNX2 ENH is potentially controlled by a distinct set of TFs and c-JUN as the principal pivot of this regulatory platform. PMID: 28981843
    35. TGF-beta1 stimulates the phosphorylation of Runx2 at three serine amino acids, and this event is required for MMP-13 expression in osteoblastic cells. PMID: 28419442
    36. TP(thymidine phosphorylase ) curbed the expression of three proteins-IRF8, RUNX2, and osterix. This downregulation was epigenetically driven: High levels of 2DDR, a product of TP secreted by myeloma cells, activated PI3K/AKT signaling and increased the methyltransferase DNMT3A's expression PMID: 27658717
    37. Overexpression of miR-196b suppressed cell viability, migration, invasion, and induced apoptosis as well as inhibited TGF-beta induced epithelial mesenchymal transition process in A549 cells. In addition, Runx2 was a putative target of miR-196b, and Runx2 silence remarkably increased cell apoptosis and abolished the promotive effects of miR-196b suppression on cell viability, migration and invasion. PMID: 28950255
    38. Runx2 promotes autophagy in metastatic breast cancer cells by increasing acetylation of alpha-tubulin sub-units of microtubules. PMID: 28345763
    39. Mutation in the RUNX2 gene is associated with acute myeloid leukemia patients with lympho-myeloid clonal hematopoiesis. PMID: 27881874
    40. present observations strongly suggest that RUNX2/mutant p53/TAp63-regulatory axis is one of the key determinants of SAHA sensitivity of p53-mutated pancreatic cancer cells PMID: 28671946
    41. All the three novel RUNX2 mutations significantly reduced the transactivation activity of RUNX2 on osteocalcin promoter. PMID: 28738062
    42. Taken together, these results identify a crucial role for the RUNX cluster in the maintenance and progression of cancer cells and suggest that modulation of the RUNX cluster using the PI polyamide gene-switch technology is a potential strategy to control malignancies. PMID: 28530640
    43. miR-466-mediated attenuation of RUNX2 as a novel therapeutic approach to regulate prostate cancer growth, particularly metastasis to bone. PMID: 28125091
    44. miR-203 has a crucial role in suppressing heterotopic ossification by directly targeting Runx2. PMID: 27787524
    45. mechanical load upregulates expression of Runx2 gene via potentiation of PC1-JAK2/STAT3 signaling axis, culminating to possibly control osteoblastic differentiation and ultimately bone formation. PMID: 27699453
    46. the Runx2 knockdown cells displayed activation of AMP-activated protein kinase (AMPKalpha), the sensor of cellular metabolism. Importantly, the Runx2 knockdown in bone-derived cells resulted in increased sensitivity to both Erk1/2 inhibition and AMPKalpha activation by PD184161 and metformin, respectively, despite increased IGF-1Rbeta and AMPKalpha levels. PMID: 26804175
    47. RUNX2 mutation disturbs the modulatory effects of dental follicle cells and periodontal ligament cells on the differentiation of osteoclasts and osteoblasts, thereby interfering with bone remodelling. These effects may contribute in part to the pathological manifestations of retention of primary teeth and delayed eruption of permanent teeth in patients with cleidocranial dysplasia. PMID: 27509906
    48. RUNX2/P57 gene expression is strongly activated, in a process that is accompanied by enrichment of activating histone marks (H3K4me3, H3ac, and H3K27ac) at the P1 promoter region, to control osteogenic lineage commitment of umbilical cord derived mesenchymal stem cells. PMID: 27689934
    49. provide evidence to show that CBX4 may serve as a tumor suppressor in colorectal carcinoma by recruiting HDAC3 to the Runx2 promoter to impede Runx2 expression PMID: 27864346
    50. Suggest an adhesion-dependent mechanism of RUNX2 for the osteotropism and bone colonization of breast cancer cells and implicate RUNX2 and integrin alpha5 as potential molecular markers for the prediction of bone metastasis. PMID: 27317874

    显示更多

    收起更多

  • 相关疾病:
    Cleidocranial dysplasia (CLCD); Metaphyseal dysplasia with maxillary hypoplasia with or without brachydactyly (MDMHB)
  • 亚细胞定位:
    Nucleus.
  • 组织特异性:
    Specifically expressed in osteoblasts.
  • 数据库链接:

    HGNC: 10472

    OMIM: 119600

    KEGG: hsa:860

    STRING: 9606.ENSP00000360493

    UniGene: Hs.535845