Your Good Partner in Biology Research

Human TAR DNA-binding protein 43 (TARDBP/TDP43) ELISA kit

  • 中文名称:
    人TAR DNA结合蛋白43(TARDBP/TDP43)酶联免疫试剂盒
  • 货号:
    CSB-E17007h
  • 规格:
    96T/48T
  • 价格:
    ¥3600/¥2500
  • 其他:

产品详情

  • 产品描述:

    This Human TARDBP ELISA Kit was designed for the quantitative measurement of Human TARDBP protein in serum, plasma, cell culture supernates, cerebrospinal fluid (CSF). It is a Sandwich ELISA kit, its detection range is 0.312 ng/mL-20 ng/mL and the sensitivity is 0.078 ng/mL.

  • 别名:
    ALS10 ELISA Kit; OTTHUMP00000002171 ELISA Kit; OTTHUMP00000002172 ELISA Kit; OTTHUMP00000002173 ELISA Kit; TADBP_HUMAN ELISA Kit; TAR DNA binding protein 43 ELISA Kit; TAR DNA binding protein ELISA Kit; TAR DNA-binding protein 43 ELISA Kit; TARDBP ELISA Kit; TDP 43 ELISA Kit; TDP-43 ELISA Kit; TDP43 ELISA Kit
  • 缩写:
  • Uniprot No.:
  • 种属:
    Homo sapiens (Human)
  • 样本类型:
    serum, plasma, cell culture supernates, cerebrospinal fluid (CSF)
  • 检测范围:
    0.312 ng/mL-20 ng/mL
  • 灵敏度:
    0.078 ng/mL
  • 反应时间:
    1-5h
  • 样本体积:
    50-100ul
  • 检测波长:
    450 nm
  • 研究领域:
    Others
  • 测定原理:
    quantitative
  • 测定方法:
    Sandwich
  • 精密度:
    Intra-assay Precision (Precision within an assay): CV%<8%      
    Three samples of known concentration were tested twenty times on one plate to assess.  
    Inter-assay Precision (Precision between assays): CV%<10%      
    Three samples of known concentration were tested in twenty assays to assess.    
                 
  • 线性度:
    To assess the linearity of the assay, samples were spiked with high concentrations of human TDP43 in various matrices and diluted with the Sample Diluent to produce samples with values within the dynamic range of the assay.
      Sample Serum(n=4)  
    1:1 Average % 86  
    Range % 80-93  
    1:2 Average % 100  
    Range % 95-104  
    1:4 Average % 92  
    Range % 88-95  
    1:8 Average % 97  
    Range % 90-104  
  • 回收率:
    The recovery of human TDP43 spiked to levels throughout the range of the assay in various matrices was evaluated. Samples were diluted prior to assay as directed in the Sample Preparation section.
    Sample Type Average % Recovery Range  
    Serum (n=5) 98 91-104  
    EDTA plasma (n=4) 96 90-102  
                 
                 
  • 标准曲线:
    These standard curves are provided for demonstration only. A standard curve should be generated for each set of samples assayed.
    ng/ml OD1 OD2 Average Corrected  
    20 2.360 2.296 2.328 2.201  
    10 1.568 1.570 1.569 1.442  
    5 1.026 1.061 1.044 0.917  
    2.5 0.653 0.679 0.666 0.539  
    1.25 0.433 0.459 0.446 0.319  
    0.625 0.304 0.321 0.313 0.186  
    0.312 0.219 0.223 0.221 0.094  
    0 0.128 0.126 0.127    
  • 本试剂盒所含材料:
    • A micro ELISA plate --- The 96-well plate has been pre-coated with an anti-human TDP43 antibody. This dismountable microplate can be divided into 12 x 8 strip plates.
    • Two vials lyophilized standard ---Dilute a bottle of the standard at dilution series, read the OD values, and then draw a standard curve.
    • One vial Biotin-labeled TDP43 antibody (100 x concentrate) (120 μl/bottle) ---Act as the detection antibody.
    • One vial HRP-avidin (100 x concentrate) (120 μl/bottle) ---Bind to the detection antibody and react with the TMB substrate to make the solution chromogenic.
    • One vial Biotin-antibody Diluent (15 ml/bottle) ---Dilute the Biotin-antibody.
    • One vial HRP-avidin Diluent (15 ml/bottle) ---Dilute the HRP-avidin solution.
    • One vial Sample Diluent (50 ml/bottle)---Dilute the sample to an appropriate concentration.
    • One vial Wash Buffer (25 x concentrate) (20 ml/bottle) ---Wash away unbound or free substances.
    • One vial TMB Substrate (10 ml/bottle) ---Act as the chromogenic agent. TMB interacts with HRP, eliciting the solution turns blue.
    • One vial Stop Solution (10 ml/bottle) ---Stop the color reaction. The solution color immediately turns from blue to yellow.
    • Four Adhesive Strips (For 96 wells) --- Cover the microplate when incubation.
    • An instruction manual

    显示更多

    收起更多

  • 本试剂盒不含材料:
    • A microplate reader capable of measuring absorbance at 450 nm, with the correction wavelength set at 540 nm or 570 nm.
    • An incubator can provide stable incubation conditions up to 37°C±5°C.
    • Centrifuge
    • Vortex
    • Squirt bottle, manifold dispenser, or automated microplate washer
    • Absorbent paper for blotting the microtiter plate
    • 50-300ul multi-channel micropipette
    • Pipette tips
    • Single-channel micropipette with different ranges
    • 100ml and 500ml graduated cylinders
    • Deionized or distilled water
    • Timer
    • Test tubes for dilution

    显示更多

    收起更多

  • 数据处理:
  • 货期:
    3-5 working days

产品评价

靶点详情

  • 功能:
    RNA-binding protein that is involved in various steps of RNA biogenesis and processing. Preferentially binds, via its two RNA recognition motifs RRM1 and RRM2, to GU-repeats on RNA molecules predominantly localized within long introns and in the 3'UTR of mRNAs. In turn, regulates the splicing of many non-coding and protein-coding RNAs including proteins involved in neuronal survival, as well as mRNAs that encode proteins relevant for neurodegenerative diseases. Plays a role in maintaining mitochondrial homeostasis by regulating the processing of mitochondrial transcripts. Regulates also mRNA stability by recruiting CNOT7/CAF1 deadenylase on mRNA 3'UTR leading to poly(A) tail deadenylation and thus shortening. In response to oxidative insult, associates with stalled ribosomes localized to stress granules (SGs) and contributes to cell survival. Participates also in the normal skeletal muscle formation and regeneration, forming cytoplasmic myo-granules and binding mRNAs that encode sarcomeric proteins. Plays a role in the maintenance of the circadian clock periodicity via stabilization of the CRY1 and CRY2 proteins in a FBXL3-dependent manner. Negatively regulates the expression of CDK6. Regulates the expression of HDAC6, ATG7 and VCP in a PPIA/CYPA-dependent manner.
  • 基因功能参考文献:
    1. TDP-43 deposition leads to targeted RNA instability in amyotrophic lateral sclerosis and frontotemporal dementia PMID: 30030424
    2. CHCHD10 mutations have a role in cytoplasmic TDP-43 accumulation and synaptic integrity PMID: 28585542
    3. Study confirms the high expression of hTDP-43 in the CNS, increased microgliosis and motor deficits, exhibiting further prominent ALS/FTLD pathologies, such as cytoplasmic and insoluble TDP-43 in TAR6/6 mice. This model represents not only pathological TDP-43 expression but also disease-relevant posttranslational changes. PMID: 29787578
    4. The relevance of contact-independent cell-to-cell transfer of TDP-43 and SOD1 in amyotrophic lateral sclerosis. PMID: 28711596
    5. Findings highlight that the phosphatase regulator, GADD34, also functions as a kinase scaffold in response to chronic oxidative stress and recruits CK1 and oxidized TDP-43 to facilitate its phosphorylation, as seen in TDP-43 proteinopathies. PMID: 29109149
    6. We identified impaired RNA metabolism, secondary to TDP-43 loss of function, as a possible pathological mechanism of HSPB8 toxicity, leading to muscle and nerve degeneration PMID: 29029362
    7. the introduction of SOD1(G93A) and TDP43(A315T), established Amyotrophic lateral sclerosis (ALS)-related mutations, changed the subcellular expression and localization of RNAs within the neurons, showing a spatial specificity to either the soma or the axon. Altogether, we provide here the first combined inclusive profile of mRNA and miRNA expression in two ALS models at the subcellular level PMID: 28300211
    8. These data provide structural detail for the established mechanistic role of the well-folded TDP-43 NTD in splicing and link this function to liquid-liquid phase separation. PMID: 29438978
    9. TDP43 alters most splicing events with splicing factor SRSF3 in triple-negative breast cancer. PMID: 29581274
    10. Of the whole cohort of patients with Motor Neuron Disease and Frontotemporal Dementia, 1 patient harboured a mutation in the TAR DNA-binding protein (TARDBP) gene. PMID: 29886477
    11. Study demonstrated TDP-43/pTDP-43 deposition in skin nerves in ALS patients. Although the mechanisms underlying TDP-43 in ALS are currently unknown, its detection is of interest, and the deposition may occur not only in ALS but also during the aging process which is based on observations of the present study. PMID: 29804146
    12. Both ALS and FTD patients presented with higher TDP-43 and tauT levels compared to the control group. The combination of biomarkers in the form of the TDP-43 x tauT / tauP-181 formula achieved the best discrimination between ALS or FTD and controls, with sensitivities and specificities >0.8. PMID: 28848086
    13. TDP-43 turnover and toxicity depend in part upon the endocytosis pathway. TDP-43 inhibits endocytosis, and co-localizes strongly with endocytic proteins, including in amyotrophic lateral sclerosis patient tissue. PMID: 29233983
    14. more selective group of neurons appears to be affected in frontotemporal lobar degeneration (FTLD)-TDP and FTLD-FUS than in FTLD-tau PMID: 28984110
    15. study found a high frequency of the TARDBP p.M337 V mutation in familial amyotrophic lateral sclerosis (ALS) in south-eastern China; the TARDBP-linked ALS patients showed a benign disease course and prolonged survival PMID: 29621978
    16. describe here two cases of apparently sporadic amyotrophic lateral sclerosis associated with mutations, respectively, in SOD1 and TARDP genes PMID: 27494151
    17. Study indicates that there are at least two common patterns of TDP-43 and tau protein misfolding in human brain aging. In patients lacking substantial Alzheimer's disease pathology, cerebral age-related TDP-43 with sclerosis (CARTS) cases tend to have tau neurofibrillary tangles in the hippocampal dentate granule neurons, providing a potential proxy indicator of CARTS. PMID: 28281308
    18. Depletion of TAF15, FUS and TDP-43 in human-induced pluripotent stem cell-derived motor neurons affects different genes. PMID: 27378374
    19. TDP-43 mislocalisation into axons precedes cell death in cortical neurons, and that cytoskeletal structure and function is impaired by expression of either TDP-43 wild-type or mutant constructs in vitro. PMID: 29787572
    20. TDP-43 impairs the induction of multiple key stress genes required to protect from disease by reducing the recruitment of the chromatin remodeler Chd1 to chromatin. PMID: 29153328
    21. The mutation of TARDBP caused amyotrophic lateral sclerosis PMID: 29478603
    22. Cytoplasmic TDP-43 mislocalization and aggregation is a pathological hallmark of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 is an RNA-binding protein with a prion-like domain that promotes TDP-43 misfolding. [review] PMID: 27920024
    23. SOD1 mutations were present in 20% of familial amyotrophic lateral sclerosis (ALS) patients and 1.9% of sporadic ALS patients, while FUS mutations were responsible for 13.3% of familial ALS cases, and TARDBP mutations were rare in either familial or sporadic ALS cases. PMID: 27604643
    24. an alpha-helical component in the centre (residues 320-340) of the C-terminal domain is related to the protein's self-association and LLPS. Systematically analysing ALS-related TDP-43 mutants (G298S, M337V, and Q331K) in different buffer conditions at different temperatures, we prove that this phase separation is driven by hydrophobic interactions but is inhibited by electrostatic repulsion. PMID: 28988034
    25. the present study did not demonstrate oxidative phosphorylation defects in TDP-43 mutants PMID: 28482850
    26. both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing PMID: 27849576
    27. The data of this study suggest that TDP-43 pathology is associated with age and exacerbated by the presence of concomitant Alzheimer's disease pathology. PMID: 27495267
    28. The A382T mutation in TARDBP caused a reduction in the ability of cells to respond to stress through loss of TDP-43 function in stress granule nucleation. The pathogenetic action revealed in study model does not seem to be mediated by changes in the localization of the TDP-43 protein. PMID: 28172957
    29. TDP-43 competes with other splicing factors for binding to cryptic exons and can repress cryptic exon inclusion. PMID: 28549443
    30. Study shows that TDP-43 is deposited in the olfactory bulb in Alzheimer's disease, albeit of low frequency. The deposition appears to be a late occurrence compared to TDP-43 deposition in other brain regions. PMID: 26810591
    31. ALS-mutant linked TDP-43 mutations expressed at moderate levels in a pattern mimicking endogenous TDP-43 also cause toxicity in a non-cell autonomous manner. Eliminating mutant TDP-43Q331K synthesis in a proportion of motor neurons delayed disease onset, reduced aberrant nuclear morphology in those neurons at early disease stages, and almost eliminated age-dependent accelerated death of those motor neurons. PMID: 28357566
    32. Study reports that cryptic exon incorporation occurred not only in Alzheimer' disease brains exhibiting TDP-43 pathology, but also in neurons lacking cytoplasmic inclusion but exhibiting nuclear clearance of TDP-43. PMID: 28332094
    33. Acetylation of the protein triggers TDP-43 pathology in cultured cells and mouse skeletal muscle, which can be cleared through an HSF1-dependent chaperone mechanism that disaggregates the protein. PMID: 28724966
    34. These studies showed that physiological oligomerization of TDP-43 is mediated through its N-terminal domain, which forms functional and dynamic oligomers antagonizing pathologic aggregation. PMID: 28663553
    35. Expression of PFN1 mutants induces accumulation of TDP-43, and promotes conversion of normal TDP-43 into an abnormal form. These results provide new insight into the mechanisms of TDP-43 proteinopathies and other diseases associated with amyloid-like protein deposition. PMID: 27432186
    36. Study reports the altered expression and/or mislocalization of the TAR-DNA binding protein 43 (TDP-43) in both niemann-pick disease type C mouse and in a human neuronal model of the disease. Results extend the importance of the role of TDP-43 in neurodegenerative disease and further highlight the need to prioritize the targeting of this protein to develop novel therapeutic strategies. PMID: 27193329
    37. This study demonstrated that increased rates of TDP-43-associated hippocampal atrophy might occur at least 10 years before death in patient with Alzheimer disease. PMID: 28919059
    38. s observed impaired levels of glutathione (downstream Nrf2 antioxidant) in TDP-43M337V patient fibroblasts and astrocyte cultures from TDP-43Q331K mice, indicative of elevated oxidative stress and failure of some upregulated antioxidant genes to be translated into protein. PMID: 28334913
    39. removing the human orthologs of Hrb27c (DAZAP1) in human neuronal cell lines can correct several pre-mRNA splicing events altered by TDP-43 depletion PMID: 28575377
    40. TDP-43 suppressed tau expression by promoting its mRNA instability through the UG repeats of its 3-UTR. The C-terminal region of TDP-43 was required for this function.The level of TDP-43, which is decreased in AD brains, was found to correlate negatively with the tau level in human brain. PMID: 28335005
    41. Amyotrophic lateral sclerosis mutations disrupt phase separation mediated by alpha-helical structure in the TDP-43 low-complexity C-terminal domain. PMID: 27545621
    42. we demonstrated cytoplasmic TDP-43 aggregate formation in neuronal and glial cells following adenoviral transduction of WT and CTF TDP-43 under MG-132 treatment. These TDP-43 aggregates were phosphorylated and ubiquitinated and consisted of electron-dense granules. PMID: 28599005
    43. emphasize the importance of distinguishing cerebral age-related TDP-43 with sclerosis from late-onset frontotemporal lobar degeneration with TDP-43 pathology and from advanced Alzheimer disease with TDP-43 pathology PMID: 28467211
    44. Mutant and wild type human TDP-43 replacing the endogenous Drosophila gene reveals phosphorylation and ubiquitination in mutant lines in the absence of viability or lifespan defects. PMID: 28686708
    45. The study establishes a functional/physical partnership between FMRP and TDP-43 that mechanistically links several neurodevelopmental disorders and neurodegenerative diseases. PMID: 27518042
    46. By silencing TDP-43, s saw significant inhibition of cell proliferation and metastasis in A375 and WM451 cells. TDP-43 knockdown could suppress glucose transporter type-4 (GLUT4) expression and reduce glucose uptake. PMID: 27786596
    47. The present study, based on 15 cases staged for pTDP-43 pathology, reports the finding that pathologically altered TDP-43 in Betz cells reacts differently than that in bulbar or spinal alpha-motoneurons. The major differences between the two types of histological profiles are discussed within the context of their possible consequences and implications for the potential further progression or spread of the pTDP-43 lesions. PMID: 27757524
    48. This study have shown that TDP-43-positive cytoplasmic inclusions were frequently found in the amygdala of pathologically and genetically confirmed cases of Frontotemporal Lobar Degeneration and Motor Neuron Disease. PMID: 28859337
    49. Results indicated that a range of disease specific TDP-43 variants are generated in amyotrophic lateral sclerosis patients with different variants being generated in sporadic and familial cases. PMID: 28122516
    50. heterogeneous structural reorganization and decreased stability of the truncated RRM2 domain PMID: 28793209

    显示更多

    收起更多

  • 相关疾病:
    Amyotrophic lateral sclerosis 10 (ALS10)
  • 亚细胞定位:
    Nucleus. Cytoplasm. Cytoplasm, Stress granule.
  • 组织特异性:
    Ubiquitously expressed. In particular, expression is high in pancreas, placenta, lung, genital tract and spleen.
  • 数据库链接:

    HGNC: 11571

    OMIM: 605078

    KEGG: hsa:23435

    STRING: 9606.ENSP00000240185

    UniGene: Hs.300624